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of the generalized effective liquid approximation

C. F. Tejero and J. A. Cuesta
Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
(Received 31 August 1992)

We apply the differential formulation of the generalized effective liquid approximation to the study of
hard-sphere and hard-disk freezing. We show that the thermodynamic properties of the solid phase are
rather insensitive to the compressibility factor of the fluid phase used to map the solid onto the effective
liquid. The solid-fluid coexistence data instead are quite dependent on the equation of state describing
the fluid phase. Very accurate results, as compared with the simulation data, are obtained for both the

freezing of hard spheres and hard disks.

PACS number(s): 64.70.Dv, 64.10.+h

I. INTRODUCTION

The freezing of hard spheres into perfect crystals is
probably the most notable example of the successful ap-
plication of the nonperturbative density functional
theories (NPDFT) to the study of classical nonuniform
systems. In all these theories the excess free energy of the
solid is determined from the excess free energy of an
effective liquid, the major differences between the various
theories consisting in the form in which the solid is
mapped onto the effective liquid. In the weighted density
approximations (WDA [1,2], MWDA [3]) the density of
the effective liquid is obtained by a nonlocal weighted
average of the solid density. In the direct-correlation-
function (DCF) approaches (ELA [4], GELA [5]) the
DCEF of the solid is approximated by that of an effective
liquid with a lower bulk density.

When applied to soft interactions the NPDFT fail in a
greater or lesser extent in predicting the freezing into
crystalline structures [6]. It has been argued [7] that the
relatively large density change at coexistence of the
hard-sphere freezing makes the NPDFT insensitive to
physical details, which could explain why these various
theories work particularly well for hard spheres but not
for soft inverse-power potentials with only a small density
change upon freezing. Another possible explanation [6]
is that the range of the solid correlations is incorrectly
described when the range of the interaction potential is
increased. That is, the effective liquid which gives a good
description of the amplitude of the solid correlations does
not necessarily provide a good estimate of their range.
The fact that the hard-sphere system is a particular case
for which the free energy and the entropy cannot be dis-
tinguished has also been claimed as a possible explanation
for the failure of the NPDFT when applied to softer in-
teractions [8].

The lack of NPDFT for the freezing of soft spheres has
been circumvented by shifting attention to hard-sphere
J
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perturbation schemes as approximations to the study of
more realistic potentials [8,9]. The interest of the hard-
sphere NPDFT is thus twofold, providing a self-
contained approximation for hard potentials and a refer-
ence system for the study of continuous potentials.

In this paper we consider an alternative, differential,
formulation of the generalized effective liquid approxima-
tion (GELA) of Lutsko and Baus [5] and apply it to the
study of the hard-sphere and hard-disk freezing. As ex-
plained already elsewhere [S] this approximation gives
very accurate free energies, fluid-solid coexistence data,
and pressures for the hard-sphere solid when compared
with the simulation results. It also leads to most of the
remaining NPDFT when additional assumptions are in-
troduced into the theory. In Sec. II we introduce the
differential formulation of the GELA as applied to the
fluid-solid transition. The thermodynamic and structural
properties of the fluid phase and the one-parameter
Gaussian approximation for the solid density needed for
solving the GELA are introduced in Sec. III while the
ideal free energy of the solid is briefly discussed in Sec.
IV. The results for the hard-sphere and hard-disk freez-
ing are presented in Sec. V and our conclusions are gath-
ered in Sec. VI.

II. THE DIFFERENTIAL FORMULATION OF THE GELA

The generalized effective liquid approximation (GELA)
proposed by Lutsko and Baus [5] is a NPDFT for the
determination of the excess free energy of a system
characterized by a nonuniform one-particle density (a
solid, a liquid crystal, etc.) in terms of the excess free en-
ergy of some effective liquid. For a solid of density p,(r),
the density of the effective liquid p which is used to
represent the solid is a functional of p (r), a dependence
which will be indicated by square brackets as p{p,]. In
the GELA this functional dependence is given by the fol-
lowing integral equation [5]:

fdrps(r)fdr'ps(r')foxdafoada'C(|r—r’|;f)‘[a’ps])
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where C(|r|;p) is the (Ornstein-Zernike) DCF of the
liquid phase of density p. In Eq. (2.1), p, is moreover
the average number density of the solid phase
psVp= fdrps(r), with ¥V, the volume of the D-
dimensional box, and A is a parameter (0 <A =<1) which
connects a reference density [here, p,(r)=0] to the solid
density p,(r) through a linear path in the space of density
functions: p,(r)=Ap,(r). The density of the effective
liquid is determined by setting A=1 in Eq. (2.1), which is
a highly nonlinear integral equation for p.

The solution of the GELA considered by Lutsko and
Baus [5] is obtained by expanding p{Ap, ] around A=1 as

plrp,1=A 3 (A—1)"a,lp,] 2.2)

n=0

with p{p, ]=ay[p,]. Substituting this expansion into Eq.
(2.1) and differentiating with respect to A, a sequence of
equations is obtained which, when A is set equal to 1, al-
lows determination of the expansion coefficients a,.
However, this determination is not straightforward since
the first two equations of the sequence involve all the ex-
pansion coefficients a@,. The method proposed by Lutsko
and Baus is to solve the GELA by successive approxima-
tions. First, by setting a; =a, = ‘- - =0 and determining
a, from the first equation of the sequence. Next, keeping
only a, and a; in Eq. (2.2), which are then calculated
from the first two equations of the sequence, and so on.
The procedure is terminated when the change in a
[which is the only coefficient that matters in Eq. (2.2)] be-
comes small. Two drawbacks of this method are the con-
vergence of Eq. (2.2) and the truncation needed to solve
the first two equations of the sequence.

An alternative (differential) formulation of the GELA
has recently been introduced in connection with the
study of the isotropic-nematic transition of hard convex
bodies [10]. In this formulation, the original integral
equation (2.1) is transformed into a system of two ordi-
nary differential equations using the following transfor-
mation steps. Differentiating twice Eq. (2.1) with respect
to A we have
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is related to the excess free energy per particle of the
solid phase ¢ [p,] [5] as (B=1/kzT)

Bbulp, )=~ [ 'an [ drep(xp, S, )

and
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with ¢.,(p) equal to the excess free energy per particle of
the liquid phase of density p. Equation (2.3) can be fur-

ther transformed by taking into account that for fixed
ps(r) all the functionals become ordinary functions of A.
Let f(A)=vpp(A) denote the packing fraction (the frac-
tion of the total volume ¥V, occupied by the D-spheres)
with v, denoting the volume of a D-sphere of unit radius.
With the definition

- 9 ~
z(AM)= Y {AP(F(A))]} (2.7)
Eq. (2.3) can be rewritten as
Z'(M)=D(H(A)) , (2.8)

where the prime denotes the derivative with respect to A.
Moreover, computing the derivative indicated in the
right-hand side of Eq. (2.7) and grouping terms we find

= 2R AR
AP (A(V)

Notice that for A=0 the apparent singular behavior of
Eqg. (2.9) can be regularized by considering the exact low-

(2.9)

density expansion of ¥(#%), Y(#)=22 "'+ - - -, to obtain
sy Loy 1
M (0)——?)—2 (0)—;5<I>(0) . (2.10)

The differential formulation of the GELA consists in the
system of two ordinary differential equations in (i) and
z(A) [Egs. (2.8) and (2.9)] which together with the initial
conditions [following from Egs. (2.1) and (2.7)]

7(0)=2(0)=0 (2.11)

can be solved numerically to obtain the effective liquid
density 7)(1). The excess free energy of the solid phase
¢.[ps ] can then finally be determined from

Boexlpsy=v(1(1)) . 2.12)

III. APPLICATION TO HARD SPHERES
AND HARD DISKS

In order to solve the ordinary differential equations of
the GELA [Egs. (2.8)-(2.11)] we need as input the ther-
modynamics, (1), and the structure, C(|r|;%), of the
liquid phase together with the periodic density of the
solid, p,(r). For the latter we use the one-parameter
Gaussian approximation

D/2
Zexp[—a(r—rj)z] ,
J

p(r)= % 3.1)

where the sum runs over the Bravais lattice vectors {r;}
of the crystal structure.

Taking into account the translational invariance prop-
erties of the crystal lattice and performing the angular in-
tegrations in Eq. (2.4) we find

o(A(0))=— 3 [ “dR RCR;AANS(R;ary),  (32)
j

where
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S(R;a,r;) 21rrj2 ] exp 5 (R —r;)
—exp —%(R +rj)2J (3.3)
for D =3 and
S(R;a,r;)=aexp —%(R2+rj2) Iy(aRr;)  (3.4)

for D =2, with I,(x) denoting the zeroth-order modified
Bessel function.

The thermodynamic and structural properties of the
fluid phase can be obtained from different approximate
theories. For the structure of the fluid phase, i.e., the
DCF, we consider the Percus-Yevick (PY) equation
which can be solved exactly for hard spheres [11] leading
to

C(x;M=—0O(1—x) |y, +60y,x +1jy,x* |, (3.5
where ©O(x) is the Heaviside step function, 7y,
=(14+27)2/(1=9)%, v,=—(1+4/2)*/(1—H)*, f==
03p/6, and x =R /o with o the hard-sphere diameter.
As the PY equation can only be solved analytically for
the odd values of D, we take for the DCF of the hard-
disk fluid the approximate analytical expression of Baus
and Colot [12] which compares very well to the numeri-
cal solution of the PY equation [13]. This expression is
obtained by assuming that the low-density expansion of
the DCF can be extended to the high-density regime if re-
formulated in terms of a rescaled density dependent di-
ameter [12] leading to

x

a b

0
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where Z,())=(14c,72)/(1—5)?, c,=7/3—4V3/m, §
=m0’p/4, and x =R /o with o the hard-disk diameter.
Here w,(x /a) is related to the overlap “area” of two hard
disks whose centers are a distance x /a apart and is given

by
172 ]

(3.7)

where a =a(#]) is the ratio of the effective to the real
hard-disk diameter which is determined from the non-
linear equation

2
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We have also investigated the effect of using different
effective fluid equations of state on the thermodynamic
properties of the solid phase. The excess energy per par-
ticle of the fluid phase is determined by

,Z(n')—1
¢(n)=f0"dn—~(—77ﬁ,2**,

where Z (1)=pP /p is the compressibility factor and P is
the pressure. For hard spheres we have considered both
the PY compressibility equation of state, Zpy(7), and the
Carnahan-Starling (CS) equation, Z (7). For hard disks
we have looked for different compressibility factors by
writing

(3.9

Z(n)= (3.10)

(1—m)?
an expression proposed by Baus and Colot [12] as a gen-
eralization of the results of scaled-particle theory. As ex-
plained therein the expansion coefficients ¢, are deter-
mined from the virial coefficients by expanding Eq. (3.10)
into a virial series. In practice, the infinite series
S r_ic,m" in Eq. (3.10) is truncated at some finite order
N. We have considered two cases: Z(n)=Zy(n) with
N =2 and N =6. Compared with the simulation data of
Erpenbeck and Luban [14], it can be shown that Z,(7) is
not accurate for large densities whereas Z¢(7n) is very
close to the simulation results. Since it is needed only for
low-7 values, we have used Z =Z,(7) in Eq. (3.6) but as
the fluid-solid coexistence data are very sensitive to the
fluid equation of state, we have used both Z,(n) and
Z(7) for the equation of state of the fluid. Moreover, we
have also considered an analytical compressibility factor
in the same form as Z4(7) but with ¢, and c; determined
from the virial coefficients B; and B, (which are known
exactly) while ¢y, cs, and c4 were fitted to the simulation
data of Erpenbeck and Luban [14] yielding
¢, =—0.72553, ¢5=2.52783, and cq=—2.4945. This
compressibility factor will henceforth be denoted by
ZgL(n).

1V. THE IDEAL FREE ENERGY OF THE SOLID PHASE

The ideal free energy per particle of the solid phase is

given by
1

i =———|d In[A?, -1}, 4.1
Bbalps )= [ drp (n){In[APp,(r)]—1] (4.1)
where A is the de Broglie thermal wavelength. More ela-
borate expressions for B¢;;[p,] using the one-parameter
Gaussian approximation [Eq. (3.1)] can be found else-
where for hard spheres [5] and hard disks [15] and will
not be repeated here. We note instead that for the large-
a values where the equilibrium solids are found, the ideal
free energy per particle of the solid phase can be approxi-
mated by its asymptotic large-a form,
ag?

D
+ =
2
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Béilps1=D In In

—1]——1. (4.2)

Once the total free energy particle of the solid phase



47 HARD-SPHERE AND HARD-DISK FREEZING FROM THE . .. 493

Bf =B+ L., is determined from Egs. (2.12) and (4.2),
the equilibrium solid is deiermined for a given average
solid density by minimizing 3f with respect to the Gauss-
ian width parameter a for each crystal structure. The re-
sulting free energies are then used to determine the
compressibility factor Z (or pressure) and the chemical
potential u from the thermodynamic relations

7 = 2B
97

As indicated by Lutsko and Baus [5] we note that in
finding the minimum of the total free energy versus a
some structure develops in the small-a region which cor-
responds to large-i] values. This structure appears only
because the PY equation is not an accurate description
for the structure of the fluid in the high-density region.
It can be shown [5] that most of this small-a structure
disappears when using an improved DCF for the fluid
phase without changing the large-a behavior. As we are
interested only in the large-a region, where the equilibri-
um solids are found, the PY DCF has been used in the
present investigation. This will moreover allow us to test
our results for hard spheres against the previous calcula-
tions which also did use the PY DCF for the study of the
solid phase.

-9
, Bu= 877("r]Bf) . (4.3)

V. RESULTS
A. Hard spheres

Our results for the freezing of hard spheres are essen-
tially the same as those obtained by Lutsko and Baus [5]
using the A-expansion method described in Sec. II. In
Table I we compare the free energy per particle,
Bo=Bf —3In(A/o)+1, and the pressure of the fcc and
bce hard-sphere solids (using Z g to map the solid onto
the fluid) with some available simulation data [2,16]. It
can be seen that the free energy is underestimated for the
fcc solid while it is overestimated for the bcc solid, the
relative errors being only 2%. Moreover, the pressure is
slightly overestimated for the compact lattice (about 2%).
We note that both the free energy and the pressure ob-
tained from the differential formulation of the GELA are
slightly higher than the results of Lutsko and Baus. We
also remark that the solid free energy B¢ is rather insensi-
tive to the fluid compressibility factor (CS or PY) used to
solve the GELA. For instance, the results for n=0.50
(0.60) are Bp=75.087 (7.261) when Z g is used and 5.080

TABLE I. Free energy per particle f¢ and compressibility
factor BP /p; as computed from the differential formulation of
the GELA for the fcc and bee hard-sphere solids at various den-
sities. The simulation results have been taken from Refs. [2,16].

pa’ B$ MO Bs  BP/p, MO BP/p,
1.000 (fec) 5.661 5.549 10.26 10.4
1.025 (fcc) 5.893 5.813 10.84 11.0
1050 (fec) 6.148 6.086 11.54 11.7
1.075 (fec) 6.426 6.370 12.28 12.5
1.100 (fco) 6.758 6.668 13.12 13.4
1.041 (bec) 6.134 6.174 14.7
1100 (bec) 6.973 7.105 19.6

(7.257) when Zpy is used.

By considering the three phases two by two the ex-
change of stability is found to occur at #=0.517 (fluid-
fcc), at n=0.528 (fluid-bcc), and at n=0.503 (fcc-bec).
These results show that the bcc solid is metastable in the
whole density range: with respect to the fluid phase in
the low-density region and with respect to the fcc solid in
the high-density region.

Finally, the fluid-fcc solid coexistence data obtained
from the differential formulation of the GELA are
Np=0.496 (0.471), 7,=0.545 (0.522), and P*=fBPo>
= 12.0 (10.3) when the CS (PY) equation of state is used
for the fluid phase. In the former case our results give
very accurate results (the reduced pressure P* being
slightly overestimated) as compared with the simulation
data [17] (nz=0.494, 13=0.545, and P*=11.7), the
major difference with respect to the results of Lutsko and
Baus [5] being the improvement of the value of the Lin-
demann ratio at coexistence: L =0.112 in this work and
L =0.100 in [5]. In view of the relative insensitivity of
the solid free energy with respect to the fluid used to map
the solid onto the effective liquid, it becomes apparent
that the quality of the fluid-solid coexistence data are
mainly determined by the quality of the equation of state
of the fluid phase.

B. Hard disks

The melting of two-dimensional solids is a controver-
sial question. Following Kosterlitz, Thouless, Halperin,
Nelson, and Young [18] the melting might proceed via
two continuous transitions involving an intermediate
phase (the hexatic phase) connecting the solid and the
fluid phases. A transition of the usual first-order type, as
observed in three-dimensional systems, however, has been
proposed by several authors. In spite of a large body of
simulation and experimental research, the nature of the
two-dimensional freezing is still unknown.

In the present investigation the solid-fluid transition is
assumed to proceed via a first-order transition as for
D =3. As usual, the free energies of the fluid and solid
phases are determined separately and the two-phase coex-
istence data are obtained from the solution of the equilib-
rium coexistence conditions pp(nz)=ps(ng) and
Pp(np)=Ps(ng).

We have considered both the square lattice and the tri-
angular lattice. In the former case no mechanically
stable solid has been found (there is no free-energy
minimum with respect to the Gaussian parameter «).
For the compact structure stable solids are found for
packing fractions 7= 0.700. In Fig. 1 the free energy per
particle of the solid phase, B¢=Bf—2In(A/o)+1, is
represented versus Y =(ao?)!”? for different packing
fractions. It is found that B¢ is rather insensitive with
respect to the compressibility factor used to solve the
GELA. Indeed, for n=0.70 (0.74) we have B¢$=3.525
(4.101), 3.519 (4.097), and 3.521 (4.098), for Z =Z,, Z,,
and Zg; , respectively.

In Table II the solid-fluid coexistence data obtained
from the different equations of state of the fluid phase are
compared with the MD simulation data of Alder and oth-
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FIG. 1. Free energy per particle B¢ vs Y =(ao of a com-
pact hard-disk solid of packing fraction 7=0.70-0.78, by steps
of 0.01 (from bottom to top). The dashed line indicates the loca-
tion of the minimum corresponding to the stable solid.

ers [19] and the MC simulation results of Hoover and
Ree [17]. We have also included theoretical results ob-
tained from the ELA [20] and the MWDA [21]. It is
seen that the results obtained using Zg; to describe the
fluid phase compare favorably with the simulation re-
sults, while there is less good agreement when using Z,
or Zs. Notice that the theoretical results of the ELA [20]

15 T T T T T T T
12
11+
10 = e} 7
- g %
=
8 L 1
0.68 0.70 0.72
5 n -
0 1
0.0 0.2 0.4 0.6 0.8

7

FIG. 2. The solid-fluid phase diagram of hard disks as ob-
tained from the differential formulation of the GELA in the
P*.y plane, with P*=BPo? The fluid branch has been ob-
tained by fitting the MC data of Erpenbeck and Luban [14] with
Zyg; . The solid branch is the result of the present investigation.
The horizontal line connecting the solid and fluid branches cor-
responds to the coexistence data (obtained with Zg; ) appearing
in Table II. The MC simulation results of Hoover and Ree [17]
and the MD data of Alder and others [19] are denoted by solid
and open dots, respectively. The inset shows the coexistence re-
gion in more detail. The three tie lines shown correspond to the
results of [17] and [19] for the dashed lines and to the results of
the GELA (Zg; ) for the solid line.

TABLE II. Solid-fluid coexistence data as computed from
different NPDFT [20,21] of hard-disk freezing and compared to
the simulation results [17,19]. Here 77 and 75 denote the coex-
isting packing fractions of the fluid and solid phases while
BP /pcp, With pcp the close-packing density, is the dimensionless
pressure at coexistence.

Nr Ns BP /pcp
MD [19] 0.691 0.716 7.72
MC [17] 0.690 0.724 8.08
GELA (Zg) 0.688 0.715 8.0
GELA (Zy) 0.684 0.710 7.8
GELA (Z,) 0.674 0.700 7.4
ELA [20] 0.713 0.730 10.2
MWDA [21] 0.674 0.724 7.0

have been obtained with Z, while those of the MWDA
[21] with Z =(1—7%)"2. The Lindemann ratio at coex-
istence found in these NPDFT is 0.177 (ELA) [20], 0.129
(MWDA) [21], and 0.119 in the present work.

In Fig. 2 the hard-disk phase diagram as obtained from
the GELA using Zg; for the compressibility factor of the
fluid phase is compared with some available simulation
results [17,19]. It is seen that the pressure of the solid
phase obtained from our theoretical calculations is
overestimated with respect to the simulation results, the
relative error (about 3-7 %) decreasing as density in-
creases.

VI. CONCLUSIONS

The hard-sphere and hard-disk freezing has been ob-
tained from the numerical solution of the differential for-
mulation of the GELA. We have used a one-parameter
Gaussian approximation for the periodic density of the
solid phase and PY-like DCF for the effective liquid.
Different equations of state for the fluid phase have been
used to determine the solid-fluid coexistence data. We
have shown that the free energy of the solid phase is rath-
er insensitive to the compressibility factor used to map
the solid onto the liquid. However, the packing fraction
of the coexisting solid and fluid phases and the pressure
at coexistence depend strongly on the equation of state of
the fluid phase. When the CS equation for D =3 and the
compressibility factor Zg; obtained from the MC simula-
tion data of Erpenbeck and Luban for D =2 are used we
obtain very accurate results as compared with the avail-
able simulation coexistence data.

In conclusion, we have shown that the predictions of
the GELA are in good agreement with the computer
simulations whenever the fluid is described by an ‘“‘exact”
equation of state. On the other hand, the thermodynamic
properties of the solid are rather insensitive to the fluid
data used as input to map the solid onto the liquid.
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